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Abstract

A higher-order one-dimensional analysis of the in-plane flexural deformation of thin-walled curved box beams is
carried out. The main contribution of the present work is to consider an additional degree of freedom accounting for
the in-plane distortional deformation of the thin-walled cross section that is accompanied by the in-plane bending
deformation. Especially, we develop a systematic procedure to determine this bending distortion and formulate a
higher-order beam theory including this additional degree of freedom. The significant contribution of the bending
distortion to the beam flexibility is clearly demonstrated through several case studies.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

A comprehensive analysis of thin-walled open and closed beams was carried out by Vlasov (1961), and
extended by Dabrowski (1968) for the analysis of thin-walled curved girders. Vlasov’s theory is also used
to develop a thin-walled beam element by Fu and Hsu (1995). Recently, Kim and Kim (1999a,b, 2000)
have developed a higher-order one-dimensional theory for thin-walled closed straight beams under tor-
sion, torsional distortion, and torsional warping. These investigations have addressed the significant effects
of distortion and warping deformations on the analysis accuracy. (For more references on this subject,
see the references cited in Kim and Kim, 2000 and Kim et al., 2002.) Paulsen and Welo (2001) have also
shown the effect of the hour-glass section distortion on the buckling phenomena of hollow rectangular
beams.

To consider the effect of curvature on the flexibility and stress concentration of thin-walled structures,
Whatham (1986) studied the bending characteristics of a thin-walled curved pipe system using a thin-shell
theory, and Lewis and Chao (1990) derived the flexibility factors of trunnion piping elbows. In the case of
thin-walled circular cross sections, the ovalization of cross sections (Beskin, 1945) is known to increase the
flexibility of pipe systems. Hu and Li (1999) also studied elastic—plastic bending problems of pipes. These
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efforts were successful in predicting the additional flexibility of thin-walled curved elbows, but limited to
circular sections only.

Although thin-walled curved beams having arbitrary cross sections are used in many engineering ap-
plications, such as automobile bodies and high way bridges, there appears no one-dimensional theory
yielding satisfactory results for thin-walled closed curved beams. Since the well-known Timoshenko beam
theory does not give accurate results for thin-walled curved box beams, we aim at developing a one-
dimensional higher-order beam theory for such beams. Though higher-order theories are available, they are
applicable only to solid curved beams or to thin-walled straight beams. For accurate in-plane flexural
analysis of thin-walled curved box beams, we propose to include an additional degree of freedom repre-
senting the symmetric sectional deformation mode in addition to the three degrees of freedom typically
employed in the Timoshenko theory.

The main contribution of the present work is to find an approximate shape for the symmetric sectional
deformation and to derive the higher-order one-dimensional theory for the in-plane flexural analysis of the
thin-walled curved box beam. In the case of a rectangular hollow cross section, out-of-plane flexural and
torsional deformations are decoupled with in-plane flexural deformation. Since the one-dimensional
analysis of the out-of-plane flexural deformation has already been worked out by the present authors (Kim
and Kim, 2002), the present work is mainly focused on the in-plane flexural analysis of thin-walled curved
box beams.

2. Bending distortion

Fig. 1 shows a thin-walled curved box beam with its geometric dimensions. The global coordinate sys-
tem (p, ¢,y) is also shown in Fig. 1. To address the need to develop a higher-order one-dimensional theory
for accurate analysis, we may consider a cantilevered thin-walled curved box beam shown in Fig. 2.
One end is fixed and the other end, rigidly constrained so that the cross section at the end always remains
undeformed. The external forces acting at the end of the beam may be decomposed into a tangential
force 7, a radial force V' and an in-plane bending moment M. The three displacement components in
the direction of T, V, and M are the tangential displacement u, the radial displacement v, and the rotation
angle p.

Before presenting the present development of a higher-order theory, we begin with checking the accuracy
of the Timoshenko beam theory employing the three displacement components based on the Timoshenko
kinematics for the thin-walled curved box beams. In Fig. 3, the radial displacement v(¢) along the center
line C of the cantilever beam under the tip bending moment M = 1 Nm. The beam geometry and the

Fig. 1. The geometry and coordinate system of a thin-walled curved beam having a rectangular cross section.
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Fig. 2. A cantilevered thin-walled curved box beam subjected to external loads and corresponding displacement components.
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Fig. 3. The radial displacement v(¢) of the centerline of the beam shown in Fig. 2 as a function of ¢ (b = 50 mm, # = 70 mm, 7 = 1 mm,
R=1m, £E=200 GPa, v=0.3, ® =60°, M =1 Nm).

material property are given in Fig. 3. From Fig. 3, it is clear that the one-dimensional result by the
Timoshenko theory gives quite inaccurate results in comparison with the plate finite element result
(I-DEAS, 1993). The inaccuracy of the Timoshenko theory arises from the fact that the Timoshenko theory
does not consider in-plane cross section deformations. Unlike in solid beams, in-plane cross section
deformations are not negligible in thin-walled box beams. Therefore, a higher-order beam theory needs to
be developed to predict accurately the behavior of thin-walled curved box beams.

In finding in-plane sectional deformation shape functions of thin-walled curved box beams, one may
consider the fundamental section deformation modes illustrated in Fig. 4. Vlasov (1961) noted that the
torsional distortion mode shown in Fig. 4(b) is accompanied by torsion. Kim and Kim (1999a,b, 2000) have
incorporated this torsional distortion mode to analyze the coupled deformations of torsion, torsional
distortion, and torsional warping in thin-walled beams with rectangular or quadrilateral cross sections. The
present authors (2002) have also adopted this torsional distortion mode for the accurate prediction of the
deflection of the thin-walled curved box beams under out-of-plane bending coupled with torsion.
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Fig. 4. In-plane cross section deformation modes of the thin-walled curved box beam: (a) deformation mode accompanied by the
bending moment about y-axis and (b) torsional distortion mode (thin: undeformed, bold: deformed).

The deformation shape shown in Fig. 4(a) may be accompanied by the in-plane flexural bending de-
formation of a thin-walled curved box beam when it is subjected to a bending moment about the y-axis.
Due to the curvature effect, the accompanied deformation may be not symmetric with respect to the y-axis.
This cross section deformation affects significantly the flexibility of a thin-walled curved box beam, and can
be decomposed into the symmetric and antisymmetric modes and the higher modes. From the present
authors’ unpublished investigation, it can be concluded that the additional flexibility due to the cross
section deformation is mainly due to the symmetric mode shown in Fig. 4(a), as far as the radius of cur-
vature is not so small. For more accurate analysis of the thin-walled curved box beam with a small radius of
curvature, one may need to take into account the antisymmetric mode (and higher modes). The goal of the
present work, however, is to derive the one-dimensional theory for the in-plane flexure of a thin-walled
curved box beam that is as simple as possible; therefore we select only one degree of freedom representing
the symmetric mode, which will be called the bending distortion y, throughout this work.

To determine the explicit formula representing the deformation shape of bending distortion y;, it may be
convenient to treat four walls of a rectangular box beam separately as shown in Fig. 5. Fig. 5 also shows the
local coordinate systems (7;, s;, ¢) (where i = 1,2, 3,4) attached to each of four walls, which will be used to
facilitate subsequent analysis.

The displacement components along the contour line of the beam cross section due to bending distortion
7, Mmay be written as

Uni (5, @) = Y2 (5:) 76 () (la)
i (i, ) = Wit (5:) 20 (@) (1b)
ugi(sis @) = Wi (si)xn () (Ic)

where i/’s represent the shape functions of each piece of the beam cross section which must be determined.
The quantities associated with the ith wall are designated by subscript i.



Y. Kim, Y. Y. Kim | International Journal of Solids and Structures 40 (2003) 6111-6123 6115

n, Wall 2
SZ\%/
N3
u
wall B\T s{Us)
S;

S (Uy=U, . i=1,2,34)
wall 4 'n, "

Fig. 5. Local coordinates for each wall of a thin-walled curved rectangular box beam.

Considering the fact that the bending distortion y, is dominated by the in-plane bending of walls and
neglecting the unloading effect or shear lag (Kristek, 1979), one may assume that

(si) = Y (si) =0, “(s) #0

Since a complicated analysis to determine the shape function y* for the bending distortion y, does not
merit one-dimensional beam analysis, we will derive an approximate shape function by using a quarter
model of the cross section shown in Fig. 6(a). Because both the geometry and external loads due to the in-
plane flexure are symmetric with respect to the two symmetry axes of the hollow rectangular cross section,
the shape function ¥* of the bending distortion may be assumed to be symmetric. Based on this obser-
vation, the deformed shape of the quarter model is depicted in Fig. 6(b).

The apparent bending deformation of the walls in Fig. 6(b) in the p—y plane may be well approximated
by the Euler—Bernoulli beam theory (b, > t). Thus, the outward normal displacements /”> of the contour
line of the beam cross section may be written as homogeneous solutions of the Euler-Bernoulli beam
equations:

nl

. h
o (s1) = ap + a151 + apst + azs; (0 < <§> (2a)

" (s2) = bo + b1ss + bas3 + bys; (——<S2<0) (2b)

[ L
_ A
v (s) M, b 1

Fig. 6. (a) Local coordinate systems of a quarter model of the rectangular cross section (4; and 4, are the middle points of walls 1 and
2, respectively) and (b) internal moments acting at wall 1 and 2 and the wall deformation.
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The outward displacements for (—% <s; <0) and (0<s,< %) can be obtained by changing the signs of
(a17a37b17b3)'

To determine the coefficients a;,b; (j =0, 1,2, 3), the following conditions are used. First, each wall is
assumed to be inextensional so that the normal displacements at corner B vanish:

h b
fﬁ‘i<51=§)= jjg<s2:—§):0 (3)

Second, the slopes of the normal displacements at s; = s, = 0 must vanish from the symmetry condition
(see Fig. 4(a)):

dlﬂib dlﬁﬁb
G B =0 =5 =0=0 (4)

The slope continuity condition and the moment equilibrium condition at corner B must be satisfied:

dygi (R _dys (b
dS] (Sl _2> B dS2 2= _E (5)

S =)+ (2wl -5)) o 0

where each wall of the cross section is assumed to be in the condition of plane stress. Thus the bending
moment—curvature relation may be given by

Ef &y~
12(1 —v?) ds?

M(Si) =

The final condition to consider is the antisymmetry of deformations around corner B. To obtain the
deformation shown in Fig. 6(b), we observe that the bending moments in the two adjacent walls around B
must satisfy the following conditions:

h
Ml(S1:§> >0, M2<S2: —g)go (7)

Combining Egs. (6) and (7) yields the vanishing moment condition at the corner as

h b
M1<S1_2> _M2<S2_ —2> :0

Equivalently,

Suly(_m\_ (b
ds? (S1—§) o ds3 (SZ_ _§> =0 (8)

Using seven conditions stated by Eqgs. (3)—(5), and (8), the shape functions y* (s;) and y/5(s,) of Eq. (2) can
be determined as
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Due to the symmetry, y/%(s3) and /%3(s4) are simply

s(s3) =¥ (s1)

ni(sa) = Y5 (s2)

3. One-dimensional field equation

In this section, we derive higher-order one-dimensional field equations considering the usual kinematic
variables (u, v, ¢) as well as the bending distortion variable y,. Here, we follow the procedure used for the
analysis of thin-walled straight closed beams (Kim and Kim, 2000). First, the shell displacements of the
contour line can be written as

Uni(Si, @) = Y (s)v(@) + Wie (s:) 10 () (10a)
Usi(81, @) = Yy (s:)v(P) (10b)
ugi(si, @) = Wi (s)u(d) + Wl (s:) B(¢) (10c)

where only nonvanishing components of the deformation shape functions ¥ (s;)’s are kept.
For completeness, the Timoshenko kinematics is written as

lrb;i(si) =1 (l = 1a2a 3a4)

N1 (i=2,4)

Using the shell displacements of the contour, the three-dimensional displacements #,;, i, and i of a
generic point in the beam cross section can be expressed as

i (i, 51, §) % tni(si, @) = W, (s)u(P) + 2 (s:) 1 ())

.
a5 9) & (s, 9) — m ")

— Y (s)o(d) — e

thgi(ni i, @) = ugi(si, §) = %i(si)“(ﬁb) + lp/ji(si)ﬁ(d))
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The three-dimensional strain field then becomes

ctnsd) = {@ (14 )+ (14 03) ot 22 { -5 (14 )i
s+ fio + {1+ agn ) + 2 (e o) bt 2

- (1 Fgg )+ (1403 (122)
e 7) = 5[ S5 (1 Yoo 4.3 (163 Joso) S 4 [ ale)
+%<l+@%)wff<&>}ﬁ<z>+{ A(1+agg) a1 oq) g
(12b)
et = -n S di(” W) (12¢)

where the curvilinear coordinate system (;, s;, z) is introduced with z = R¢. We introduced two parameters,
¢ and (;, defined as

DT =13
é_{o (i=2,4) (13)
(= { (()_1)(1‘72)/2 8 z ;:i; (14)

In obtaining the results given in Eq. (12), the following approximation is used as

0 bl1o ,
mz{l—@ﬁ}§ (i=1,3)

jlz{hﬁ%}% (i=2,4)

pO¢

The three-dimensional stress components are determined from the constitutive relation as
Uzzi(nh Si, ()b) = E(ezzi + Ves,s‘[) (153)
O-szi(nh Siy d)) = 2GESZI' (ISb)
Ussi(nh Si, ¢) = E(Essi + VGzzi) (150)

where G is the shear modulus given as G = E/2(1 +v).
The system potential energy I1 for the present problem can be written as

Hzl/“/ ak,ekldAdz—/ /(pﬁz+qﬁ3)dAdz—/ (ot + . da (16)
2 z1 JA z1 J4 A 21

where A4 is the area of the cross section of the thin-walled curved box beam. The external loads acting in the
axial and transverse directions are denoted by p and ¢g. The coordinates z; and z, (z; < z») represent the
locations of two ends of the beam, and (") denotes the quantities prescribed at the ends.
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Substituting Egs. (12) and (15) into Eq. (16) and integrating the resulting potential energy IT over the
beam cross section A4 yields

e :
II = 3 / {E (elu’2 +eyv? + e3f + 2equ'v+ 2esu' f + 266013')
zy

+E (glxi + 2g1u 1 + 28007y + 8370 + 2878 1 + 2vgzxi)

+ Gful + £ + o+ 2’ + 2+ 2+ Iy )|z

22 — — - Z
—/ (pru+qiv +pof+ qop)dz — [Tu+ Vo + MB+ Xy, | (17)
21

where ()’ denotes the differentiation with respect to z. In Eq. (17), the coefficients, such as e, f, g, and /s,
can be found by integrating the deformation shape functions. For instance,

e = Z/{ (1+g,2R)+c(1+c )}Z(IP;,-(Si))ZdAi
A= [ 1 0q) (i) as

The explicit expressions of other coefficients are skipped here.

The definitions of tangential force T, radial force V7, in-plane bending moment M, and transverse
bimoment X prescribed at the ends of a beam are

4 4
T - Z / UZZi‘//:idAi’ 7 = Z / Uszil//ﬁidAi
i=1 J4i ~ /4
- A A = L dA;
M = ; /Ai O-zzllpztdAza X ; /Ai O-“Z’lpm dAl

and p;, qi, etc. are defined as

4 4

n=>y /Apl//Z,-dAi, a=> /Aqlﬂﬁ,-dAi
i=1 i=1
4 4

=) /Apt/ff,-dAi, @=> /Aqlﬁi?dfli
i=1 i=1

Using the principle of the minimum potential energy, we obtain the following one-dimensional gov-
erning equations as

—E{eiu” +eqt +esB’ + guy} + G(fiu+ fav' + 5B+ hsyy,) = pr
Efeqd + exv +esf + gox} — Gfard + fo" + fsf + hayy) =
—E{esu' + est’ + esf’ + giyp} + G(fsu+ fov' + f3B + hsyy) = pa

E{guu +gov+g:f + (g1 + & + 2v€) 0} — Ghiyy = 9>
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4. Numerical studies

Since the finite element formulation is well-established, no explicit procedure to determine the stiffness
matrix K and other quantities needs to be given here. However, the reduced integration scheme (see, e.g.,
Prathap, 1993) is employed to avoid locking problems. Note that once one-dimensional results are found,
the three-dimensional displacement a(n,s, ¢) and stress o(n,s,$) can be obtained using the equations
derived in the previous section.

4.1. Case study 1: Applied bending moment at one end

As the first example, we return to the beam under a tip bending moment A = 1 Nm, which was con-
sidered in Section 2. The present results by the higher-order one-dimensional theory are compared in Fig. 7
with those by the plate finite element and the Timoshenko beam theory. (The number of the present beam
elements used in this example is 80.) As is obvious from Fig. 7, the consideration of the additional bending
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Fig. 7. (a) Radial displacement v(¢), (b) rotation angle (¢), and (c) the amount of bending distortion y;(¢) for the problem depicted
in Section 2.
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distortional deformation y, improves the solution accuracy remarkably. Although the stress field due to the
bending distortion is self-equilibrating, its effect on the overall structural flexibility is not negligible in thin-
walled curved beams.

4.2. Case study 2: Applied concentrated radial force at one end

We consider a cantilevered thin-walled curved box beam loaded at one end by a radial force ¥ = 1 Nm
(T = M = 0), where the cross section deformation is constrained by a rigid plate. The beam is of width
b = 40 mm, height 4 = 80 mm, wall thickness t = 1 mm, mean radius R = 0.8 m, central angle ® = 120°.
The material properties are the same as those for the previous example.

Fig. 8 compares the distribution of the radial displacements along the centerline of the inner wall (s; = 0
at wall 1), which are obtained by different theories. To determine the radial displacement along the cen-
terline of the inner wall from the present beam theory, the following equation is utilized as (see Eq. (10))

U(centerline of wall 1) = _unl(sl =0, d)) = _(lp51(sl = O)I/I(d)) + ﬁ (Sl = O)Xb(¢))

As was in the previous example, the conventional Timoshenko beam theory using three degrees of freedom
does not yield satisfactory results.

4.3. Case study 3. Effect of curvature

It is worth investigating how the bending distortion y, affects the beam flexibility depending on the mean
radius R of the beam curvature. To this end, we consider a cantilevered thin-walled curved box beam loaded
by the tangential force 7 = 1 N (V = M = 0 in Fig. 2). The beam is of width » = 25 mm, height # = 50 mm,
wall thickness = 1 mm, central angle ® = 90°, and the material properties are the same as those for the
previous examples. The tip displacements of tangential direction is calculated for different values of R,
ranging from R = 0.25 to 2 m.

The tangential displacements at the tip are predicted by the present beam, the Timoshenko beam and the
plate finite element analyses. The tangential displacements plotted in Fig. 9 are relative values divided by
the plate finite element results. (The convergence of all the numerical results are checked.) Fig. 9 shows that
the contribution of the bending distortion y, on the beam flexibility is significant unless the beam curvature
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Fig. 8. The radial displacement along the center line of wall 1.
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Fig. 9. The effect of the radius of curvature R on the beam flexibility.

is small. The finding from Fig. 9 also justifies the effectiveness of the present higher-order thin-walled
curved box beam theory.

5. Conclusion

A higher-order one-dimensional beam theory was developed for the accurate prediction of thin-walled
curved box beams under in-plane flexure. For the theory, an approximate in-plane symmetric distortional
deformation shape was determined, and the one-dimensional field equations having the three Timoshenko
kinematic variables and the additional variable for the in-plane bending distortion were derived. Several
case studies confirmed the significant effects of the bending distortional deformations on the bending
flexibility in thin-walled curved box beams. Furthermore, it was shown that the bending distortion defor-
mation cannot be ignored unless the beam curvature is very small.
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